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We explore the relationship between grand canonical (GC) ensemble and charge equilibration (CE), also
known as electronegativity equalization, theories for describing charge flow in molecules. We introduce a
new unifying approach to classical charge transfer theories based on valence bond (VB) theory and the
maximum entropy (ME) method, which we call MEVB. We show how MEVB reduces to GC and CE theories
with different choices for the definition of atomic partial charge. We believe that the MEVB approach provides
a rigorous framework within which both improved classical models of charge transfer can be developed and
a well-defined procedure for interfacing classical electrostatic models with quantum chemistry can be
established.

I. Introduction

With few exceptions,1,2 quantum chemical calculations of
electronic structure take the number of electrons in the molecule
as a fixed parameter. This is usually the correct approach for a
molecule in vacuo but can be called into question in the presence
of a surrounding environment which may either donate or accept
electrons. This point becomes important, for example, in the
treatment of solvation phenomena, surface chemistry, and
enzyme mechanisms. One traditional ab initio approach to
modeling these problems is to apply quantum chemistry to a
fragment of the system (the “active region,” usually chosen to
be a closed-shell molecule or collection of molecules).3-8 The
idea is to exploit the locality of many chemical phenomena;
the active region should obviously include any breaking or
forming chemical bonds, but the success of empirical constructs
like group additivity tables9 suggests that the detailed quantum
mechanics of far-removed bonds will be unimportant. This
fragment may then be immersed in a dielectric continuum10,11

or a field of point charges/dipoles12 in an effort to capture the
electrostatic effects of the environment. Mixed quantum me-
chanical/molecular mechanical (QM/MM) approaches13-15 go
further and include also environmental steric effects.16 When
charge transfer to/from the environment is expected to be
important, the conventional remedy is to increase the size of
the active region. In many cases, this becomes impractical
because of the computational cost of ab initio quantum
chemistry. An attractive alternative would be to develop a
“quantum chemistry for open systems”, i.e., a grand canonical
system-bath decomposition of the electronic structure problem.
A very intriguing early effort along these lines, but in the context
of the canonical ensemble, can be found in ref 17.

The construction of models that allow for charge flow without
explicit quantum chemical treatment of any of the constituent
subsystems is closely related to the above issues-the only
difference being thatall of the subsystems are treated at a low
level of detail. In particular, we are thinking of models based
on atomic electronegativities and hardnesses. These charge
equilibration (CE) methods rely on the electronegativity equal-

ization (EE) principle of Sanderson18 and are variously known
as chemical potential equalization (CPE), CE, and EE methods.
The conceptual framework for these methods is largely intuitive
and draws heavily on seminal work by many authors.18-24 While
highly approximate versions of such methods have existed for
some time,25,26it is primarily within the past decade that serious
numerical implementations and refinements have been carried
out.27-30 Difficulties with these CE models have been noted,31

usually in the form of excess charge transfer and instability and
often occurring when bonds are significantly stretched. Although
some pragmatic solutions have been proposed,29,31one can hope
that a rigorous formulation of quantum chemistry for open
systems will lead in a natural way to progress on this front also.

One of the practical reasons that we are interested in this
problem is in the context of multiscale descriptions of inter-
molecular potential energy surfaces such as QM/MM methods.
Two fundamental issues are of particular interest to us. First,
the QM/MM boundary in these approaches is typically fixed
and particles are not allowed to cross from one region to the
other. Yet there are many situations where it would be desirable
to allow the boundaries to fluctuate or to allow electrons, atoms,
and/or molecules to cross the boundary, for example, when
chemistry is coupled to vectorial transport as in cytochromec
oxidase.8 Second, there are intrinsically quantum mechanical
terms in the interaction between classical and quantum sub-
systems, for which the most natural definition implicitly requires
a wave function in both subsystems. One example is the short-
range repulsion arising from the Pauli exclusion principle. It
is, of course, always possible to parametrize these interactions,
but such a parametrization will depend on both subsystems and
may not be transferable. We feel that an alternative approach
of endowing both subsystems with a dual classical/quantum
nature is more attractive.32 Other approaches that use such a
dual representation in some regions have also been proposed,
especially for QM/MM boundaries across covalent bonds.33-35

There is a practical problem in defining the subsystems to
have both classical and quantum identities. If there is to be a
compelling advantage over treating the entire system quantum
mechanically, one must be able to movebothup and down the
hierarchy of representations. Going from a wave function-based† Part of the special issue “William H. Miller Festschrift”.
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description to a classical electrostatic representation is a simple
matter of integration, but the reverse classicalf quantum
transformation is problematic because the map is obviously not
information-preserving. In our previous attempts along these
lines,32 we have used model wave functions that were stored
(and could be perturbed if necessary). While this is reasonable
for special cases, such as a quantum solute in a classical solvent,
it will clearly become cumbersome when the classical region
is not composed of many chemically identical molecules.

In this paper, we introduce one possible definition of this
classicalf quantum map that has some theoretical appeal. The
main idea is to use the classical information, e.g., the atomic
partial charges, as a set of constraints. This defines a reduced
Hilbert space containing all wave functions consistent with the
constraints. If the set of constraints is large enough, this reduced
Hilbert space will contain only one wave function (within
arbitrary phase and normalization factors). However, in the cases
that interest us there will not be so many constraints as to fix
the wave function uniquely. How then can we proceed? Perhaps
the most natural option is to invoke an auxiliary equation; for
example, one could apply a variational principle and find the
wave function in the reduced space that minimizes the energy.
From an information theoretic standpoint, this is just a compact
way of specifying a full set of constraints. The clear disadvan-
tage is that we are led immediately back to the quantum
mechanical problem that we wish to avoid, albeit in a reduced
Hilbert space. Without specifying any constraints beyond the
original set, information theory gives us only one viable
choice: apply a maximum entropy (ME) principle within the
subspace consistent with the constraints. In practice, this means
that all wave functions within the subspace must be considered
with equal weight. This does not lead to a unique wave function,
but rather to a unique prescription for any wave function-derived
properties through an appropriate average, which is usually all
that is required. This prescription is easily extended to cases
with more constraints, for example atomic charges, dipoles, and
polarizabilities.

Several comments must be made at the outset. First, we apply
the ME principle in Hilbert space, i.e., directly to the wave
function coefficients. This is in contrast to the more traditional
approach that applies ME to the density matrix. However, it is
easy to show that the two procedures are mathematically
identical. Second, many chemical applications of ME treat the
constraints as fixed parameters. For example, one might choose
the mean value of an observable that has been measured.36

However, this is not at all necessary.37 One can instead view
the variables as forming two sets: those which are deemed
knowable and those which will not be known, either by choice
or because they cannot be known in principle. The “knowable”
variables then become the constraints and ME is applied to
define an energy (or other property) for each possible realization
of the constraints. Finally, one applies a physically motivated
auxiliary equation, e.g., energy minimization, to determine the
values of the constraints. Such a procedure combines physical
and information theoretical considerations to find the best
solution consistent with the restriction of predetermined maximal
information content.

II. Theory

1. Charge Equilibration (CE) Approaches to Charge
Transfer. The traditional heuristic “derivation” of the CE model
starts from Iczokowsky and Margrave’s analysis20 of the
variation of the energy of an isolated atom as a function of its
total charge. These authors suggested that one could fruitfully

expand the energy of an atom in a Taylor series truncated at
second order:

and further noticed that a 3-point finite difference approximation
to the electronegativity yields the Mulliken24 definition:

where IPA and EAA are the ionization potential and electron
affinity of the atom, and the equivalence of the electronegativity
and the chemical potentialµ has been noted. A similar treatment
for the hardness38 gives

Assuming additivity of the atomic energies, one can write the
energy of a molecule containingN atoms as

where the Coulomb interactions between the partial charges has
been incorporated. Early implementations used the simple
asymptotic formJAB

CE(RAB) f 1/RAB, but in their QEq method,
Rappe and Goddard27 suggested a more sophisticated form that
incorporates shielding effects that are important at typical bond
distances (atomic units are used here and throughout this paper).
Minimizing eq 2.4 under the constraint of fixed total charge
leads to the optimal partial atomic charges and is equivalent to
the application of Sanderson’s electronegativity equalization
principle.18 The resulting equations are a linear system that can
be easily solved even for large molecules on modern computers.
Given an adequate parametrization of the atomic electronega-
tivities, hardnesses, and shielded Coulomb interaction, the CE
equations can accurately predict atomic charges near the
equilibrium geometry of a molecule.27,28 However, as will be
shown in detail in later sections, the CE equations unfortunately
predict physically incorrect charges at molecular dissociation
in the gas phase. In fact, there are no satisfactory CE equations
for reactive processes, posing a serious obstacle to the develop-
ment of QM/MM methods that allow charge to flow in to and
out of the “active region.”

The work in this paper presents a more rigorous approach to
the CE equations from a wave function viewpoint. Serious
attempts to derive the CE equations have also been carried out
previously from the viewpoint of density functional theory
(DFT).39 These efforts trace back to the identification made by
Parr et al.23 for the chemical potential asµ ) ∂E[F]/∂F, where
E[F] is the energy functional in terms of the densityF.
Discussion of these earlier approaches is deferred until later in
the paper.

2. Statistical Grand Canonical (GC) Treatment of Non-
integral Electronic Occupation. We now summarize the main
features of the statistical description of an atom A capable of
interchanging electrons with a surrounding thermal bath, as
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developed extensively by Parr and co-workers39,40in the context
of DFT, building on earlier work.41-43 The simplest version of
the grand canonical (GC) ensemble description of an atom A
considers only the pure ground states corresponding to the ionic
species A0, A+, and A-. Although there does exist a more
complex version of this theory39 that takes into account species
of any number of electrons and their excited states, it leads to
very similar results in the limit of most practical interest, where
â ) 1/kT f ∞. Therefore, we confine our attention to the
simplest version for the remainder of this manuscript.

The GC partition functionZ(â,µ) of the atom A is given as

wherei labels the charge and electronic states included in the
ensemble,Ni labels the number of electrons in theith state,Ei

is the state energy,µ is the chemical potential, andgi is the
degeneracy of theith state. Restricting to the case of neutral
and singly charged ground electronic states, eq 2.5 can be
rewritten as

For convenience in what follows, we now specialize to the case
of a doublet neutral ground state and singlet charged states,
wheregA0 ) 2 andgA+ ) gA- ) 1. The average number of
electrons〈NA〉 and the average energy〈EA〉 are then

and

and the atomic charge can be defined as

One can easily show that the chemical potential,µ, may be
regarded as a function of the atomic charge and inverse
temperature, i.e.,µ ) µ(qA,â). For the case whereqA ) 0, one
finds µ0 ) µ(qA ) 0, â) ) -(IPA + EAA)/2, which is the well-
known temperature-independent result for the chemical potential.
For other values of the atomic charge,µ will have an explicit
temperature dependence. Restricting our attention to large but
finite reciprocal temperatures, we define P(qA,â) ) µ(qA,â) -

µ0. An explicit expression for this function has been obtained
previously,39,40but we only require knowledge of the function’s
sign at high values ofâ, which can be deduced from the
chemically reasonable assumption that IPA - EAA > 0:

From eqs 2.8 and 2.9 and the definition of P(qA,â),

To make contact with CE theories, it is helpful to rewrite this
explicitly as a weighted sum:

where

In the limit whereâ f ∞ (T f 0),

and

whereΘ is the Heaviside step function.44 Since39 µ(qA,âf∞)
) -∂EA

GC âf∞/∂qA, one also finds

whereδ(qA) is the Dirac delta function.44 The last expression
provides a statistical basis for the Mulliken24 definition of
electronegativity. Notice the piecewise linearity ofEA

GC âf∞

and the resulting derivative discontinuities inµ(qA,âf∞), which
have been pointed out previously.40 A similar treatment of the
hardnessηA

0 also gives the expected result:39
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3. Relation between CE and GC Treatments.Unlike
EA

GC âf∞(qA), EA
CE(qA) is a smooth function ofqA, continuous

up to its second derivative. Thus,EA
CE(qA) is obviously not

equal toEA
GC âf∞(qA), but both predict correctly the electro-

negativity, øA
0 , and hardness,ηA

0 , for the neutral atom. The
natural question at this point is whetherEA

CE(qA) is somehow
related to EA

GC âf∞(qA) as a statistical average. Simple re-
arrangement of eq 2.4:

gives the outward appearance of such an average. However, in
order thatEA

CE(qA) be a true statistical mechanics average,45 the
weights must be positive semidefinite, and sum to unity.
Although the second condition is satisfied, the first is not,
becausew+

CE andw-
CE are negative whenqA ∈ (-1, 0) andqA ∈

(0, +1), respectively. One must conclude that the weightsw0
CE,

w+
CE, andw-

CE define a spurious ensemble. Nevertheless, it is
easily verified thatqA is the average charge〈qA〉 within this
ensemble, so that the average energy and average charge are
consistent.

Despite this initial result, it is interesting to ask whether there
is some less obvious way of relating the GC and CE theories.
Somewhat surprisingly, this can be achieved by imposing only
one constraint inEA

CE, eq 2.11:

This constraint maps the weights and energies in the GC
approach onto those predicted by charge equilibration. However,
if âP(qA,â) is required to be real, this constraint is only realizable
for qA ) (1. The remaining values ofqA ∈ (-1, +1) can
only be realized by analytic continuation of the argument
âP(qA,â) ) â[µ(qA,â) - µ0]:

Since complex values of the function P(qA,â) have no clear
meaning, it is most natural to effect this equivalence by choosing
complexâ. In this way, one can understand the origin of CE
theories as complex temperature subductions of a rigorous
statistical theory. The physically relevant effect of the analytical
continuation is to smooth out the piecewise-linear behavior of
EA

GC(qA). A similar smoothing of the derivative discontinuities
in EA

GC(qA) can also be obtained at very small values ofâ
within the real domain.39 However, the curved shape of
EA

GC(qA) generated by such physical heating is not that of

EA
CE(qA). We postpone further investigation of the role of

complex temperature in charge transfer theories to future work.
What is important for the present discussion is that there is no
simple way to generate theEA

CE expression by conventional
statistical mechanics methods without ad hoc constraints.

4. Analytical Aspects of the GC and CE Theories.It is
very instructive to study in some detail the analytical behavior
of bothEA

GC âf∞(qA) andEA
CE(qA) for the case of a single atom.

In the absence of specific charge-dependent system-bath
interaction,46 EA

GC âf∞(qA) is monotonically nonincreasing with
decreasingqA, i.e., as electrons are added to the atom. Given
the restriction to the intervalqA ∈ [-1, 1], the absolute minimum
is therefore obtained forqA,min ) -1. Since the derivative
∂EA

GC âf∞(qA)/∂qA does not exist for integerqA, this minimum
does not satisfy the condition∂EA

GC âf∞(qA,min
GC âf∞)/∂qA ) 0.

Extension of the GC theory to include more charge states does
not affect this qualitative conclusion; the energy remains
piecewise-linear with derivative discontinuities at integer charges,
and the minimum energy is always obtained for the largest
negative charge allowed.39 The situation is quite different for
EA

CE(qA). Being a second-order interpolating polynomial, this
function will exhibit a true minimum where∂EA

CE(qA)/∂qA ) 0
for qA,min

CE ) -(øA
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0 > 0 (convexity),
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CE < 0, although this minimum need not lie in the interval
[-1, 1]. The minimum in EA

CE(qA) is an artifact of the
interpolation procedure and has no obvious physical meaning.
The physically incorrect consequences of this behavior are
apparent when one considers a diatomic molecule; vide infra.
The inclusion of additional charged species of the atom A to
construct a higher-order interpolating polynomial does not solve
the problem; it renders complicated expressions for the elec-
tronegativity and hardness that are difficult to interpret, and the
resulting polynomial will be plagued with several unphysical
maxima and minima.

Now we analyze the behavior of bothEA
GC âf∞(qA) and

EA
CE(qA) in the context of a dissociating molecule in the gas

phase. Defining analogous energy expressions for an atom B,
the total energy of a molecule AB at infinite separation is given
by

and

where RAB is the bond distance and charge neutrality has
been enforced by introducingq ) qA ) -qB w qA + qB ) 0.
Since bothEA
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derivative discontinuities. In any chemically realistic case,
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i.e., dissociation in the gas-phase results in neutral
atoms. As withEA

GC âf∞(qA) and EB
GC âf∞(qB), the minimum

of EAB
GC âf∞(q,RAB)∞) does not satisfy the condition

∂EAB
GC âf∞(qmin

GC âf∞)/∂q ) 0 because the derivative does not
exist for integer charges. The optimization ofEAB

GC âf∞(q,R)∞)
with respect toq is therefore a case of linear programming.
Furthermore, at the minimum, it does not hold that both atoms
are at equilibrium among themselves,µA * µB. This behavior
is shown schematically in the left panel of Figure 1 for the
specific case of LiF.

In contrast, the minimum ofEAB
CE(q,R)∞) does correspond

to a point where∂EAB
CE(q)/∂q ) 0, and

Since it always holds thatηA
0 > 0 andηB

0 > 0 (convexity), the
direction of the charge transfer is solely determined by the
electronegativity differenceøB

0 - øA
0 . Except whenøB

0 - øA
0 )

0, this minimum will not lie at the physically correct point of
qmin

CE ) 0, incorrectly predicting partially charged atoms at
dissociation. This behavior is illustrated in the right panel of
Figure 1 for the specific case of LiF. However, in the CE model,
atoms A and B are at equilibrium,µA ) µB. The root of the
unphysical charge transfer can be traced back either to this
enforced equilibrium or to the lack of derivative discontinuities
at integer charges in the CE model. We do not find any
compelling argument to insist on either of these alternative
viewpoints.

Within the GC model, the infinitely remote atoms A and B
are not at equilibrium but rather totally disconnected. Therefore,
they will not exchange charge. In contrast, the same remote
atoms described within the CE model are forced into an
unphysical equilibrium, predicting incorrect charge transfer.
There have been attempts47 to predict dissociation into neutral
fragments while retaining the assumption of equilibrium between
the fragments at infinite separation. However, this has been
accomplished in an ad hoc manner, essentially by neglecting
the electronegativity difference in the numerator of eq 2.24.
Although such an approach may be worthy of more detailed
consideration, we make no such attempt here.

Regardless of the appropriateness ofEAB
GC âf∞(q,RAB) in the

dissociated limit, one expects on physical grounds that asRAB

becomes finite, charge transfer may occur and equilibrium
conditions will be obeyed. Thus, one expects the piecewise-
linear form ofEAB

GC âf∞(q,RAB) should become smoothed as the
chemical bond is formed. Indeed, it has been speculated in the
literature that the increasing interaction between the atoms when
a molecule is made would bring the shape ofEAB

GC âf∞(q,R)∞)
into one similar to that ofEAB

CE(q).39 Although a statistical
theory having these features would be highly desirable, it is
not known at present. We take a completely different, wave
function-based, approach in the remainder of this paper, but
we note in passing that the complex temperature isomorphism
presented above may provide a solution more in keeping with
the spirit of the statistical approach.

5. Valence Bond (VB) Wave Function Approach and Its
Relation with GC and CE Theories. So far, the discussion
about a classical charge-transfer theory has been restricted to
its traditional realm of statistical mechanics, with emphasis on

the connection, or lack thereof, between GC and CE theories.
In this section, we attempt to derive GC and CE theories directly
from wave function-based quantum mechanics. The point is to
identify exactly what assumptions would give rise to the GC
and CE theories starting from first-principles quantum mechan-
ics. While there have been some previous attempts in this
direction,48 our approach is quite different. Furthermore, we
believe our approach is the first to unify the GC and CE theories,
both of which appear as special cases of a single theory in the
following.

Our starting point is the simplest wave function capable of
describing charge transfer in the system. First, we limit
consideration to a diatomic molecule, not out of necessity but
rather for clarity of exposition. For this case of a diatomic
molecule AB, a valence bond (VB) wave function49,69containing
three VB configurations (A-B, covalent; A+B-, ionized A; and
A-B+, ionized B) is used to describe the electronic structure:

For simplicity, we consider only two active electrons; the
remaining core electrons are assumed to be localized on the
atoms and to shield perfectly, such that the effective nuclear
charge on each center,Zeff, may be taken as+1. Furthermore,
we restrict the analysis to the case where the neutral atoms A
and B have a doublet ground state. In the case of the isolated
atom A, the ionic species A+ , A0, and A- will be obtained
when 0, 1, or 2 valence electrons are placed on it, and
analogously for B. The effective Hamiltonian of the system
including nuclear repulsion becomes

with

where standard electronic structure theory notation is used.50 A
minimal basis set is adopted, with one normalized, real atomic

qmin
GC âf∞ ) 0 (2.23)

qmin
CE )

(øB
0 - øA

0)

2(ηA
0 + ηB

0)
(2.24)

Figure 1. Dependence of energy on charge transfer in LiF at infinite
separation for the GC and CE models. Solid lines are for the individual
atoms, while the dashed lines denote the LiF molecule. Notice the
piecewise-linear form of the energy in the GC model compared to the
parabolic form in the CE model. The absolute minimum in the GC
model is atq ) 0, as expected on physical grounds. As discussed in
the text, there is residual charge transfer at infinite separation for the
CE model, indicated by the fact that the energy is minimized for
nonzeroq.

ΨVB ) cA0B0ΨA0B0 + cA+B-ΨA+B- + cA-B+ΨA-B+

) ccΨc + cIA
ΨIA

+ cIB
ΨIB

(2.25)

Ĥeff(1,2;R) ) Ĥ(1) + Ĥ(2) + 1
r12

+ 1
R

(2.26)

Ĥ(i) ) T̂(i) + V̂A(i) + V̂B(i)

) - 1
2
∇i

2 -
ZA

eff

|RBA - rbi|
-

ZB
eff

|RBB - rbi|
(2.27)
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function on each center:φA(i) andφB(i). The normalized wave
functions for the VB structures are then

whereSAB(R) ) 〈φA|φB〉 is an atomic overlap matrix element
and the overbar denotesâ spin. The VB energyEVB and the
normalization condition are

The intrinsically nonorthogonal VB matrix elements can be
readily calculated with the Lo¨wdin rules51 and Jacobi’s ratio
theorem.49 Defining the atomic terms

and the effective one-electron matrix elements

(whereφC is used to denote either ofφA or φB), the VB matrix
elements including nuclear repulsion are given as

where the Coulomb and exchange integrals are defined as usual
and theFi(R) functions are

For large R, the expected classical electrostatic interactions
between the charged species in eq 2.32 are evident. Finally,
the VB configuration overlap matrix elements are

The definition of atomic partial charge given a molecular wave
function is a critical point in our discussion. This topic and the
closely related question of how atoms can be defined inside
molecules have a long history in quantum chemistry.52 We
mention only the approaches closely related to Mulliken
analysis: Mulliken,53,54 Coulson,55 and Löwdin56 charges. All
three of these definitions are equivalent within the zero
differential overlap (ZDO) approximation.57,58 The reader is
referred to the original references for the detailed definitions
of these charges; we only quote the result for the Coulson
charges as they appear in the specific VB model we have
described:

Given a convenient VB model for the diatomic molecule AB,
we now consider the relationship between the GC and VB
theories. An immediate difficulty is that the VB energy will be
a function of three coefficients (given the normalization
constraint only two are independent), but the GC and CE
theories have only one parameter for this case: the charge
transferq. Thus, we need to introduce a mapping between VB
wave functions andq. Given the set of all wave functions that
are consistent with the desired charge, there are two natural ways
to proceed. The first is to choose the wave function that provides
the minimal energy within the subspace (a constrained search
procedure as has been used in a different context in DFT).59

The second is to invoke the ideas of ME,60-62 defining the
energy as an equally weighted average over the energies of all
wave functions consistent with the constraints. The optimal
values of the constraints are then determined by energy
minimization, as discussed in the Introduction. It is this second
approach that is most fruitful in relating to GC and CE theories.
This approach is partially justified by the result: we will see
below that the GC and CE models are particular cases of this

Ψc ) ΨA0B0 ) 1

x2(1 + SAB
2 )

(|φAφhB〉 - |φhAφB〉)

ΨIA
) ΨA+B- ) |φBφhB〉 (2.28)

ΨIB
) ΨA-B+ ) |φAφhA〉

EVB ) 〈ΨVB|Ĥeff|ΨVB〉

) cc
2Hcc + cIA

2 HIAIA
+ cIB

2 HIBIB
+ 2cccIA

HcIA
+

2cccIB
HcIB

+ 2cIA
cIB

HIAIB

1 ) 〈ΨVB|ΨVB〉

) cc
2 + cIA

2 + cIB

2 + 2cccIA
ScIA

+

2cccIB
ScIB

+ 2cIA
cIB

SIAIB
(2.29)

EA
0 ) hAA

IPA ) -hAA (2.30)

EAA ) -hAA - JAA

hAB ) 〈φA|T̂ + V̂A + V̂B|φB〉

hBC
A ) 〈φB|T̂ + V̂A|φC〉 (2.31)

VBC
A ) 〈φB|V̂A|φC〉

Hcc ) EA0B0 ) 1

(1 + SAB
2 )

[EA
0 + EB

0 + Fc(R)]

HIAIA
) EA+B- ) EA

0 + EB
0 + IPA - EAB + FB(R)

HIBIB
) EA-B+ ) EA

0 + EB
0 + IPB - EAA + FA(R)

HcIA
) 2

x2(1 + SAB
2 )

[hAB + (hBB
B + VBB

A )SAB + JAB
BB +

SAB

R ]
HcIB

) 2

x2(1 + SAB
2 )

[hAB + (hAA
A + VAA

B )SAB + JAB
AA +

SAB

R ]
HIAIB

) 2hABSAB + KAB +
SAB

2

R
(2.32)

Fc(R) ) [JAB + KAB + VAA
B + VBB

A +

2hABSAB +
(1 + SAB

2 )

R ]98
R ) ∞

0

FB(R) ) (2VBB
A +

1

R)98
R ) ∞

-
1

R
(2.33)

FA(R) ) (2VAA
B +

1

R)98
R ) ∞

-
1

R

Scc ) SIAIA
) SIBIB

) 1

ScIA
) ScIB

)
2SAB

x2(1 + SAB
2 )

(2.34)

SIAIB
) SAB

2

NA
(Coul) ) cc

2 + 2cIB

2 qA
(Coul) ) 1 - cc

2 - 2cIB

2

NB
(Coul) ) cc

2 + 2cIA

2 qB
(Coul) ) 1 - cc

2 - 2cIA

2

NA
(Coul) + NB

(Coul) ) 2 qA
(Coul) ) -qB

(Coul) ) q(Coul) (2.35)

Classical Fluctuating Charge Theories J. Phys. Chem. A, Vol. 105, No. 12, 20012847



maximum entropy VB (MEVB) model. However, as discussed
in the Introduction, it is also justified as the best physical
solution consistent with a description where only the constraint
variables (in this case the atomic partial charges) are considered
“knowable.”

The energyEAB
VB of an arbitrary VB wave function can be

split into the diagonal and off-diagonal parts:

The diagonal part,EAB
VB on has the same form asEAB

GC âf∞(q),
suggesting that we choose the following relations to define the
mapping between charge and coefficients:

For a given value ofq on the allowed domain, there are eight
vectors (cc, cIA, cIB)i consistent with this map, havingcc )
(x1+q-2qΘ(q), cIA ) (xqΘ(q), andcIB ) (xq[Θ(q)-1].
Averaging the eight resulting VB energiesEAB

VB[(cc,cIA,cIB)i]
leads to

where the off-diagonal terms in the energy have canceled. At
infinite separation, it automatically holds thatEAB

VB ) EAB
VB on;

however, the above mapping produces a diagonal energy
expression for all bond distances. Therefore,

where the dependence on the bond distanceR has been
made explicit. Notice thatEAB

VB Average GC can be viewed as a
generalization ofEAB

GC âf∞ for all bond distances satisfying
EAB

VB Average GC) EAB
GC âf∞ at R ) ∞.

The minimum of EAB
VB Average GC(q,R) will not necessarily

stay at the point qmin ) 0. Since the derivative
∂EAB

VB Average GC(q;R)/∂q does not exist for integerq, it is impos-
sible to find the minimum by setting∂EAB

VB Average GC(qmin,R)/∂q
) 0. Instead, a direct value inspection must be done in order to
keep track of the minimum asR varies. This can be done by a
quasi-analytical procedure if the integrals occurring in the terms
EA0B0(R), EA+B-(R), andEA-B+(R) are numerically evaluated at
different bond separations and the final energy is calculated for
each. However, a useful analytical procedure can be devised if
some approximations are introduced. Approximating the interac-
tion functions Fc(R), FA(R), and FB(R) by their asymptotic
values, the energies in the weighted sum become

These expressions are completely classical in nature and the
energy EA0B0 becomes independent ofR. At some critical
distanceRcrit, the energy of one of the ionic terms will fall below
the covalent energy, andqmin will switch abruptly from 0 to
(1. The piecewise-linear behavior ofEAB

VB Average GC(q;R) will
remain for allR. The exact quasi-analytical procedure mentioned
above will render exactly the same result of abrupt charge
transfer atRcrit although the value ofRcrit will be different.

To relate the VB and CE theories, we again appeal to ME
ideas, adopting a mapping between VB wave functions and CE
theory based on the Coulson charge. The Coulson charge
definition implies a zero differential overlap (ZDO) model,57,58

so it is appropriate to use a normalization expression that
approximatesSAB ) 0. Using this normalization constraint and
demanding that eq 2.35 hold, we findcc

2 ) (1 - q2), cIA
2 )

1/2(q2 + q), andcIB
2 ) 1/2(q2 - q). There are again eight vectors

(c1, c2, c3) satisfying the conditions withcc ) (x1-q2, to

cIA ) (x1/2(q2+q), andcIB ) (x1/2(q2-q). Although cc is
always real forq in the allowed domain, one ofcIA andcIB is
imaginary for nonintegerq. Averaging over the energies of these
eight wave functions, one finds

where the off-diagonal terms have again canceled out. At infinite
separation, this equation reduces to the CE energy expression.
However, there are a few points to be made for finite bond
distances. First, the presence ofFc(R) in the first line of eq 2.41
reflects the covalent part of the A-B interaction. Since it
represents aq-independent shift of the energy, it will have no
influence on the optimal charges as determined by minimization
of eq 2.41 at fixedR. Second, the electronegativity is now
environment-dependent:

with an analogous expression forøB(R). Itskowitz and Berkowitz
have arrived at a similar form for an environment-dependent
electronegativity using a quite different method based on density
functional theory.63 The CE model does not contain this
environment dependence, which can be interpreted to mean that
an average or representative value of the atomic electronegativity
is implicitly used, e.g.,øA(R) ≈ øA(Req). Finally, if we apply
Mulliken-Ruedenberg approximations64,65 to the integrals in
Fc(R), consistent with the ZDO origin of the Coulson charge,
and neglect all terms higher than first-order inSAB, we find

EAB
VB(cc,cIA

,cIB
) ) EAB

VB on(cb) + EAB
VB off(cb)

EAB
VB on(cb) ) cc

2Hcc + cIA

2 HIAIA
+ cIB

2 HIBIB
(2.36)

EAB
VB off(cb) ) 2cccIA

HcIA
+ 2cccIB

HcIB
+ 2cIA

cIB
HIAIB

cc
2 ) [1 + q - 2qΘ(q)]

cIA

2 ) [qΘ(q)] (2.37)

cIB

2 ) q[Θ(q) - 1]

EAB
VB Average GC)

1

8
∑
i)1

8

EAB
VB[(cc,cIA

,cIB
)i] ) EAB

VB on(q) (2.38)

EAB
VB Average GC(q,R) ) EA0B0(R)[1 + q - 2qΘ(q)] +

EA+B-(R)[qΘ(q)] +
EA-B+(R)q[Θ(q) - 1] (2.39)

EA0B0(R) ≈ EA
0 + EB

0

EA+B-(R) ≈ EA
+ + EB

- - 1
R

(2.40)

EA-B+(R) ≈ EA
- + EB

+ - 1
R

EAB
Average CE(qA,qB,R) ) EA0 + EB0 + Fc(R) +

[øA
0 - 1

2
FA(R)]qA +

[øB
0 - 1

2
FB(R)]qB +

ηA
0qA

2 + ηB
0qB

2 +
1
2
qAqB[2Fc(R) - FA(R) - FB(R)]

(2.41)

øA(R) ) øA
0 - 1

2
FA(R) (2.42)
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We conclude that the CE expression is exactly recovered (with
a shielded Coulomb interaction as employed by Rappe and
Goddard27 and an environment-dependent electronegativity)
from the application of a charge-constrained maximum entropy
procedure to a minimal basis VB wave function given the ZDO
approximation and the Coulson definition of atomic charge.

It is fruitful to compare these results to previous work in the
context of DFT. For the case of a neutral diatomic AB, the CE
chargeqA ) -qB is simply

The MEVB-CE charge is given by

differing only in the environment dependence of the electro-
negativities. By combining the Sanderson Principle with the
DFT expression for the chemical potentialsµA and µB as a
function of the atomic charges, Nalewajski66 has derived

wherefA andfB are the Fukui functions67,68 of atoms A and B,
and ∆νA and ∆νB are the external potential perturbation on
atomsA andB by their counterparts B and A, respectively, In
a more sophisticated perturbation-DFT approach, Itskowitz and
Berkowitz63 derived

This equation has the same form as eq 2.45, and becomes
identical to it under the approximation thatfA ≈ φA

2 and fB ≈
φB

2. The environment dependence of the electronegativities
cannot repair the dissociation problem. By imposing the
condition of chemical equilibriumµA ) µB at all bond
separations, Berkowitz47 has derived

which does correctly give a chargeqA ) 0 for the dissociation
in the gas phase. However, the conspicuous absence of the
electronegativity term (øB

0 - øA
0 ) will make this formula

qualitatively unrealistic for near-equilibrium geometries. A
globally accurate CE expression does not yet exist in any DFT-
based theory.

III. Conclusions

We have explored the origin of and relationships between
various classical charge transfer theories. A purely statistical
approach (GC) that has been widely studied by previous workers

has been shown to give rise to the charge equilibration (CE)
theory for a special case where the temperature is complex. We
have introduced a maximum entropy-motivated mapping be-
tween atomic charges and the underlying wave function(s):
maximum entropy valence bond (MEVB) theory.

We have shown that both the GC and CE approaches can be
considered as specialized cases of MEVB, with different
definitions for the charge that enters as a constraint. To the best
of our knowledge, this work represents the first unification of
GC and CE approaches. More importantly, our approach
suggests many other possible models that have yet to be
explored. Entire families of classical charge transfer methods
can be generated by applying these procedures with other
definitions of atomic partial charges, for example, Mulliken or
Löwdin charges. Additionally, one can proceed beyond the
minimal basis VB wave function used here. The expansion of
the number of degrees of freedom implicit in a more flexible
VB wave function should be accompanied by an extension of
the constraints from charges to include also higher multipoles
and response functions, e.g., dipoles and polarizabilities. These
are very promising new areas of research that will hopefully
culminate both in the improvement of classical charge transfer/
polarizability models and also in a rigorous and well-defined
framework for interfacing classical electrostatic models with
quantum chemistry. We have not needed to use the formal tools
of maximum entropy methods in this work because of the
simplicity of the model. However, this situation will change
for the more complicated extensions we mention.

Our aim in this paper has been primarily conceptual: to
introduce a new, rigorously derived way of formulating the
problem of quantum chemistry in open systems that emphasizes
wave functions instead of densities. However, one should realize
that the MEVB model inherits the problems of GC and CE
theories insofar as it reduces to them. The practical problem is
to remove the limitations of these theories. Because the MEVB
theory is derived in a well-defined way from wave functions,
one can identify precisely the steps that lead to breakdown, for
example the residual charge transfer in the CE representation
of infinitely separated atoms. Indeed, we have already formu-
lated an MEVB-based model that removes this problem while
retaining most of the simplicity of the CE theory.70 This work
will be presented in the sequel to this paper.
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