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We explore the relationship between grand canonical (GC) ensemble and charge equilibration (CE), also
known as electronegativity equalization, theories for describing charge flow in molecules. We introduce a
new unifying approach to classical charge transfer theories based on valence bond (VB) theory and the
maximum entropy (ME) method, which we call MEVB. We show how MEVB reduces to GC and CE theories
with different choices for the definition of atomic partial charge. We believe that the MEVB approach provides
a rigorous framework within which both improved classical models of charge transfer can be developed and
a well-defined procedure for interfacing classical electrostatic models with quantum chemistry can be

established.

I. Introduction ization (EE) principle of Sanders&hand are variously known

as chemical potential equalization (CPE), CE, and EE methods.
The conceptual framework for these methods is largely intuitive
and draws heavily on seminal work by many autiérg* While
highly approximate versions of such methods have existed for
some time?>26it is primarily within the past decade that serious
numerical implementations and refinements have been carried
out?7-30 Difficulties with these CE models have been notéd,
usually in the form of excess charge transfer and instability and
often occurring when bonds are significantly stretched. Although
some pragmatic solutions have been propé&éthne can hope

With few exceptiong;? quantum chemical calculations of
electronic structure take the number of electrons in the molecule
as a fixed parameter. This is usually the correct approach for a
molecule in vacuo but can be called into question in the presence
of a surrounding environment which may either donate or accept
electrons. This point becomes important, for example, in the
treatment of solvation phenomena, surface chemistry, and
enzyme mechanisms. One traditional ab initio approach to
modeling these problems is to apply quantum chemistry to a

fragment of the system (the "active region,” usually chosen to that a rigorous formulation of quantum chemistry for open
be a closed-shell molecule or collection of molecufe$)The 9 d Y P

idea is to exploit the locality of many chemical phenomena; systems will lead in a natural way to progress on this front also.
the active region should obviously include any breaking or ~ Oneé of the practical reasons that we are interested in this
forming chemical bonds, but the success of empirical constructsProblem is in the context of multiscale descriptions of inter-
like group additivity table3suggests that the detailed quantum Molecular potential energy surfaces such as QM/MM methods.
mechanics of far-removed bonds will be unimportant. This Two fundamental issues are of particular interest to us. First,
fragment may then be immersed in a dielectric contintih ~ the QM/MM boundary in these approaches is typically fixed
or a field of point charges/dipol&sin an effort to capture the ~ @nd particles are not allowed to cross from one region to the
electrostatic effects of the environment. Mixed guantum me- other. Yet there are many situations where it would be desirable
chanical/molecular mechanical (QM/MM) approadie® go to allow the boundaries to fluctuate or to allow electrons, atoms,
further and include also environmental steric efféétgvhen and/or molecules to cross the boundary, for example, when
charge transfer to/from the environment is expected to be Chemistry is coupled to vectorial transport as in cytochrame
important, the conventional remedy is to increase the size of oxidase? Second, there are intrinsically quantum mechanical
the active region. In many cases, this becomes impractical !erms in the interaction between classical and quantum sub-
because of the computational cost of ab initio quantum systems, for which the most natural definition implicitly requires
chemistry. An attractive alternative would be to develop a &Wave function in both subsystems. One example is the short-
“quantum chemistry for open systems”, i.e., a grand canonical "ange repulsion arising fr_om the Pauli e>_<c|u5|on p_rlnC|pIe_. It
system-bath decomposition of the electronic structure problem. iS; Of course, always possible to parametrize these interactions,
A very intriguing early effort along these lines, but in the context PUt such a parametrization will depend on both subsystems and
of the canonical ensemble, can be found in ref 17. may not be transferable. We feel that an alternative approach
The construction of models that allow for charge flow without ©f €ndowing both subsystems with a dual classical/quantum
explicit quantum chemical treatment of any of the constituent nature is more attractiv& Other approaches that use such a
subsystems is closely related to the above issues-the onlydu@l representation in some regions have also been proposed,
difference being thaall of the subsystems are treated at a low esPecially for QU/MM boundaries across covalent boffd3:
level of detail. In particular, we are thinking of models based ~ There is a practical problem in defining the subsystems to
on atomic electronegativities and hardnesses. These chargdiave both classical and quantum identities. If there is to be a
equilibration (CE) methods rely on the electronegativity equal- compelling advantage over treating the entire system quantum
mechanically, one must be able to mdyath up and down the
T Part of the special issue “William H. Miller Festschrift”. hierarchy of representations. Going from a wave function-based
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description to a classical electrostatic representation is a simpleexpand the energy of an atom in a Taylor series truncated at
matter of integration, but the reverse classieal quantum second order:
transformation is problematic because the map is obviously not

information-preserving. In our previous attempts along these .- © oE, 1 E)ZEA 5
lines32 we have used model wave functions that were stored Ex(da) =By + N Oa T 5 902 Oa
(and could be perturbed if necessary). While this is reasonable Alaa=0 A 10,=0
for special cases, such as a quantum solute in a classical solvent, _ =0 0 0.2
3 d = E(A) 1 2A0n T 17404 (2.1)

it will clearly become cumbersome when the classical region

Is not c_omposed of many chemically |de_nt|ca| mo_lgcules. _and further noticed that a 3-point finite difference approximation
In this paper, we introduce one possible definition of this 5 e electronegativity yields the Mullikéhdefinition:
classical— quantum map that has some theoretical appeal. The

main idea is to use the classical information, e.g., the atomic 0 OE, 1

partial charges, as a set of constraints. This defines a reduced A= G “HAOa=0) > 5(IPA + EAY)  (2.2)
Hilbert space containing all wave functions consistent with the A

constraints. If the set of constraints is large enough, this reduced
Hilbert space will contain only one wave function (within
arbitrary phase and normalization factors). However, in the cases
that interest us there will not be so many constraints as to fix
the wave function uniquely. How then can we proceed? Perhaps

where IR and EA\ are the ionization potential and electron
affinity of the atom, and the equivalence of the electronegativity
and the chemical potentialhas been noted. A similar treatment
for the hardness gives

the most natural option is to invoke an auxiliary equation; for 1 FE 1
example, one could apply a variational principle and find the ;72 = __2A ~ Z(IP, — EA,) (2.3)
wave function in the reduced space that minimizes the energy. 2 i[Oy 2

From an information theoretic standpoint, this is just a compact _ o _ _ _

way of specifying a full set of constraints. The clear disadvan- Assuming additivity of the atomic energies, one can write the

tage is that we are led immediately back to the quantum energy of a molecule containirlg atoms as

mechanical problem that we wish to avoid, albeit in a reduced e ©) © L 2.0

Hilbert space. Without specifying any constraints beyond the E~(ay,...0y) = Z(EA + ) + i) +

original set, information theory gives us only one viable

choice: apply a maximum entropy (ME) principlg with_in the ;BquBJig(RAB) (2.4)

subspace consistent with the constraints. In practice, this means =

that all wave functions within the subspace must be considered ) ) )

with equal weight. This does not lead to a unique wave function, where .the Coulomb |nteract[0ns betweeq the partial charggs has

but rather to a unique prescription for any wave function-derived P€€n mc_orporat%(g. Early implementations used the simple

properties through an appropriate average, which is usually all @8ymptotic formJys(Rag) — 1/Rag, but in their QEq method,

that is required. This prescription is easily extended to casesRappe and Goddattisuggested a more sophisticated form that

with more constraints, for example atomic charges, dipoles, andincorporates shielding effects that are important at typical bond

polarizabilities. distances (atomic units are used here and throughout this paper).
Several comments must be made at the outset. First, we applyMinimizing eq 2.4 under the constraint of fixed total charge

the ME principle in Hilbert space, i.e., directly to the wave leads to _the_opt|mal partial atomic charges an_d_ is eqqulen_t to

function coefficients. This is in contrast to the more traditional the a}pplll(;atlon of Sanderson’s electronegativity equalization

approach that applies ME to the density matrix. However, it is prmmp!e. The resulting equations are a linear system that can

easy to show that the two procedures are mathematically be easily solved even for large molecules on modern computers.

identical. Second, many chemical applications of ME treat the Given an adequate parametrization of the atomic electronega-

constraints as fixed parameters. For example, one might chooséiVities, hardnesses, and shielded Coulomb interaction, the CE

the mean value of an observable that has been mea¥ured. €quations can accurately predict atomic charges near the

However, this is not at all necess&kOne can instead view  €quilibrium geometry of a molecuké:*® However, as will be

the variables as forming two sets: those which are deemedShown in detail in later sections, the CE equations unfortunately

knowable and those which will not be known, either by choice pred|ct physically incorrect charges at m_olecular dlssomatl_on

or because they cannot be known in principle. The “knowable” I the gas phase. In fact, th.ere are no satisfactory CE equations

variables then become the constraints and ME is applied to for reactive processes, posing a serious obstacle to t_he develop-

define an energy (or other property) for each possible realization Ment of QM/MM methods that allow charge to flow in to and

of the constraints. Finally, one applies a physically motivated Ut of the “active region. _

auxiliary equation, e.g., energy minimization, to determine the 1€ work in this paper presents a more rigorous approach to

values of the constraints. Such a procedure combines physicafh® CE equations from a wave function viewpoint. Serious

and information theoretical considerations to find the best a{tempts to derive the CE equations have also been carried out

solution consistent with the restriction of predetermined maximal Préviously from the viewpoint of density functional theory
information content. (DFT).2 These efforts trace back to the identification made by

Parr et af® for the chemical potential as = 9E[p]/0p, where

E[p] is the energy functional in terms of the density
Discussion of these earlier approaches is deferred until later in

1. Charge Equilibration (CE) Approaches to Charge the paper.

Transfer. The traditional heuristic “derivation” of the CE model 2. Statistical Grand Canonical (GC) Treatment of Non-
starts from Iczokowsky and Margrave's analysiof the integral Electronic Occupation. We now summarize the main
variation of the energy of an isolated atom as a function of its features of the statistical description of an atom A capable of
total charge. These authors suggested that one could fruitfully interchanging electrons with a surrounding thermal bath, as

Il. Theory
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developed extensively by Parr and co-work#&in the context to- An explicit expression for this function has been obtained
of DFT, building on earlier work=43 The simplest version of  previously3®4°but we only require knowledge of the function’s
the grand canonical (GC) ensemble description of an atom A sign at high values of3, which can be deduced from the
considers only the pure ground states corresponding to the ionicchemically reasonable assumption that ° EAx > 0:

species A A*, and A". Although there does exist a more

complex version of this theo?ythat takes into account species 0 ifgy=0
of any number of electrons and their excited states, it leads to P@a.B) = u(0a,B) —uo=1 <0 if gy > 0 (2.10)
very similar results in the limit of most practical interest, where >0 ifgy <0
p = 1KT — . Therefore, we confine our attention to the
simplest version for the remainder of this manuscript. From egs 2.8 and 2.9 and the definition ofR),
The GC partition functiorz(,u) of the atom A is given as
2pa) = 3 ge " 2.5) ESC = Exs + QuEAL(L + COtBP@. A)]) +

QuPl1— coPpP@, AT} (211)
wherei labels the charge and electronic states included in the

ensembleN; labels the number of electrons in thh state E;

is the state energy is the chemical potential, angl is the
degeneracy of th@éh state. Restricting to the case of neutral

To make contact with CE theories, it is helpful to rewrite this
explicitly as a weighted sum:

and singly charged ground electronic states, eq 2.5 can be _
rittor ae 0eC 9 g ESC = WEE,, + WEE,, + WEE,,  (2.12)
Z(B,u) = exp[=B(Eno — uNpo)] where
{gAO + gA+ exp[_ﬂ(IPA + /l)] + W,(ASOC =1+ qA COtth(qA,ﬁ)]
Oa- eXPHBEAL 1)} (2.6) q
GCc__ A
For convenience in what follows, we now specialize to the case Wat = 7{ 1 — coth[BP@a.A)]} (2.13)

of a doublet neutral ground state and singlet charged states,

wherega® = 2 andga+ = ga- = 1. The average number of GC_ _ Ya
electronsiNaOand the average enerdfaOare then Wa- 2{1 + cothBP@, A1}

N, = %(ma_l;z)ﬁ In the limit where — o (T — 0),
=Ny + Egcf_’w(qA) =Ept+ EAAqA[l - ®(CIA)] + |PAqA®(qA)
expB(EA, + )] — exp[=f(IP, + u)] Eno if 0a =0
{2+ exp[-B(IP, + u)] + exp[B(EA, + u)]} ={Ept1Pagy if O0<ga<1  (214)
P S Epot EANG, if —1<0, <0
2.7)
and and
E.= - oln Wgocﬁﬁw =1+0, —29,06(qn)
A (W n GC f—o
—E ‘ Wa" " = 0,0(gs) (2.15)
=Ep —
EA, expB(EA, + u)] — IP, exp=A(IP, + )] W = q,[0(q) — 1]
{2+ exp[=p(IPx + )] + expB(EA, + )]} where® is the Heaviside step functidf.Sincé® u(ga,5—)
(2.8) = —9ESF"*/aga, one also finds
and the atomic charge can be defined as 1(Qp,f—) = EAL[O(0,) — 1] + EALQAO(Ts) —
Ja = (Npo — INAO IPA©() — IPAGAS(0,)
| —oPBEA ) eplpIP ) _EAERY g
= ~ _ B >
{2+ exp[=f(IPy + )] + exp[B(EA + w)]} ={ P, it 0<q <1 (2.16)
One can easily show that the chemical potentialmay be —EA, if =10, <0

regarded as a function of the atomic charge and inverse

temperature, i.ey = u(ga,B). For the case whergy = 0, one whered(ga) is the Dirac delta functioftt The last expression
finds uo = u(ga = 0, B) = —(IPa + EA4)/2, which is the well- provides a statistical basis for the Mullikéndefinition of
known temperature-independent result for the chemical potential.electronegativity. Notice the piecewise linearity Bf/ ™
For other values of the atomic chargewill have an explicit and the resulting derivative discontinuitiegi(@a,5—), which
temperature dependence. Restricting our attention to large buthave been pointed out previous/A similar treatment of the
finite reciprocal temperatures, we defin@Rf) = u(qa,f) — hardnessﬁ also gives the expected restft:
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1

2 — EAW)

(2.17)

0
7a(0p=0,8—) =
AR a2

PEC@=0) _1
— = | =5(Pa

3. Relation between CE and GC Treatments.Unlike
ESC/(qa), ESH(qa) is a smooth function ofja, continuous
up to its second derivative. ThuEﬁE(qA) is obviously not
equal toESC”(qa), but both predict correctly the electro-
negativity, X,‘i, and hardness;f\, for the neutral atom. The
natural question at this point is whethgx5(qa) is somehow
related to Eﬁcﬂa‘”(qA) as a statistical average. Simple re-
arrangement of eq 2.4:

1

E;(A:E(qA) =(1- qi)EAO + E(q,zA + Op)Bas T
1
E(Qi — Oa)Ea-

=WSFE, + WSFE,, + WERE, (-1=q,=<1)

(2.18)
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EﬁE(qA). We postpone further investigation of the role of
complex temperature in charge transfer theories to future work.
What is important for the present discussion is that there is no
simple way to generate thE,fE expression by conventional
statistical mechanics methods without ad hoc constraints.

4. Analytical Aspects of the GC and CE Theorieslt is
very instructive to study in some detail the analytical behavior
of both ES/~(ga) andES(qa) for the case of a single atom.

In the absence of specific charge-dependent systmath
interactiont® ES“#~(q,) is monotonically nonincreasing with
decreasingya, i.€., as electrons are added to the atom. Given
the restriction to the intervalx € [—1, 1], the absolute minimum

is therefore obtained fogamin = —1. Since the derivative
IESCP7(qa)/dga does not exist for integama, this minimum
does not satisfy the conditionEg“"(q5%" ")/dga = O.
Extension of the GC theory to include more charge states does
not affect this qualitative conclusion; the energy remains
piecewise-linear with derivative discontinuities at integer charges,
and the minimum energy is always obtained for the largest
negative charge allowed.The situation is quite different for

E,EE(qA). Being a second-order interpolating polynomial, this

. . . . - . CE _
gives the outward appearance of such an average. However, ifunction will exhibit a true minimum wher8E,~(da)/dda = 0

order thatEﬁE(qA) be a true statistical mechanics averégtae
weights must be positive semidefinite, and sum to unity.
Although the second condition is satisfied, the first is not,
becausavSF andw"F are negative whega € (—1, 0) andga €
(0, +1), respectively. One must conclude that the weig\Vgth
wSE, andwCF define a spurious ensemble. Nevertheless, it is
easily verified thatga is the average charge@j,Owithin this

for g = —(xa/27)- Sinceya > 0 andyy > 0 (convexity),
q,ffmn < 0, although this minimum need not lie in the interval
[—1, 1]. The minimum inES5(qa) is an artifact of the
interpolation procedure and has no obvious physical meaning.
The physically incorrect consequences of this behavior are
apparent when one considers a diatomic molecule; vide infra.
The inclusion of additional charged species of the atom A to

ensemble, so that the average energy and average charge afPnstruct a higher-order interpolating polynomial does not solve

consistent.

Despite this initial result, it is interesting to ask whether there
is some less obvious way of relating the GC and CE theories.
Somewhat surprisingly, this can be achieved by imposing only
one constraint irEs", eq 2.11:

coth[pP(@a.f)] = —da
= BPMa.f) = COth_l(_qA)

N B
2|n(qA+1) (—1=<0y=+1)

(2.19)

This constraint maps the weights and energies in the GC

approach onto those predicted by charge equilibration. However,

if BP(@a,p) is required to be real, this constraint is only realizable
for go = +1. The remaining values djs € (—1, +1) can
only be realized by analytic continuation of the argument

BP@aB) = Blu(da,f) — uol:

1 —
BPENS) =5 |n(qA f‘i) + S

(-1 <qy < +1)
(2.20)
Since complex values of the functiondg(8) have no clear

meaning, it is most natural to effect this equivalence by choosing
complexg. In this way, one can understand the origin of CE

the problem; it renders complicated expressions for the elec-
tronegativity and hardness that are difficult to interpret, and the
resulting polynomial will be plagued with several unphysical
maxima and minima.

Now we analyze the behavior of botBS“/(gs) and
EiE(qA) in the context of a dissociating molecule in the gas
phase. Defining analogous energy expressions for an atom B,
the total energy of a molecule AB at infinite separation is given

by
EﬁBCﬁﬁm(qA'qB’RAB =00) =
ER° () + E5" (0g)
= (Epo T Ego)[1 + 0 — 200(q)] +
(Ea- + Eg)a[O(a) — 1] +

(Ea+ + E5)q0(a) (2.21)

and
Eng(0a0s.Rag = ) = Ex(ds) + E5 ()

=Epo T Ego t (X/(i _Xg)q+
%+ n)d (2.22)

where Rag is the bond distance and charge neutrality has

theories as complex temperature subductions of a rigorousbeen enforced by introducing= ga = —0g = da + g = 0.

statistical theory. The physically relevant effect of the analytical
continuation is to smooth out the piecewise-linear behavior of
ES(ga). A similar smoothing of the derivative discontinuities
in ES(ga) can also be obtained at very small valuesfof
within the real domai? However, the curved shape of
Efc(qA) generated by such physical heating is not that of

Since bothESC” (ga) and ESC”(qg) are piecewise-linear
with derivative discontinuities at integer charges, their sum
ESS/™(q, Rag = ®) is also piecewise-linear with the same
derivative discontinuities. In any chemically realistic case,
Ea0 + Ego is lower in energy than botBa+ + Eg- andEa- +
Eg*, ensuring that the absolute minimum is obtained for
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GCf—o __ 20
o =0 (2.23)
15 " . 1
ESC(g,R—>o0 \ CE
. . .. . . AB \1° E ,R—
i.e., dissociation in the gas-phase results in neutral [ ) (4R )

atoms. As WithES®/7*(ga) and ES/7(gg), the minimum
of ESS/™°(qRas=w) does not satisfy the condition
IESSF™(qCSP™)laq = 0 because the derivative does not
exist for integer charges. The optimizationEffs " (q,R=w)
with respect toq is therefore a case of linear programming. ]
Furthermore, at the minimum, it does not hold that both atoms
are at equilibrium among themselves, = ug. This behavior
is shown schematically in the left panel of Figure 1 for the Figure 1. Dependence of energy on charge transfer in LiF at infinite
specific case of LiF. separanon_for the GC and CE models. Solid I|r_1es are for the |nd_|V|dua|
.. CE atoms, while the dashed lines denote the LiF molecule. Notice the
In contrast, the minimum oE,5(q,R=c) does correspond  pjecewise-linear form of the energy in the GC model compared to the
to a point Wherd?Eig(q)/Bq =0, and parabolic form in the CE model. The absolute minimum in the GC
model is atqg = 0, as expected on physical grounds. As discussed in

Relative Energy / eV

1
0.5 1 -1 -0.5 0

Atomic Charge g = g1, = -¢

0o_ 0 the text, there is residual charge transfer at infinite separation for the
CE _ (Oe — xa) (2.24) CE model, indicated by the fact that the energy is minimized for
M 56,0 4+ 50 ' nonzerog.
(1A + 1)

the connection, or lack thereof, between GC and CE theories.
In this section, we attempt to derive GC and CE theories directly
from wave function-based quantum mechanics. The point is to
identify exactly what assumptions would give rise to the GC

and CE theories starting from first-principles quantum mechan-

Since it always holds thafy > 0 andz9 > 0 (convexity), the

direction of the charge transfer is solely determined by the
electronegativity differencgs — 3. Except whens — 7%
0, this minimum will not lie at the physically correct point of

qrcn'li = 0, incorrectly predicting partially charged atoms at
dissociation. This behavior is illustrated in the right panel of
Figure 1 for the specific case of LiF. However, in the CE model,

ics. While there have been some previous attempts in this
direction® our approach is quite different. Furthermore, we
believe our approach is the first to unify the GC and CE theories,

atoms A and B are at equilibriunma = ug. The root of the both of which appear as special cases of a single theory in the
unphysical charge transfer can be traced back either to thisfollowing.
enforced equilibrium or to the lack of derivative discontinuities Our starting point is the simplest wave function capable of
at integer charges in the CE model. We do not find any describing charge transfer in the system. First, we limit
compelling argument to insist on either of these alternative consideration to a diatomic molecule, not out of necessity but
viewpoints. rather for clarity of exposition. For this case of a diatomic
Within the GC model, the infinitely remote atoms A and B molecule AB, a valence bond (VB) wave functi®f’containing
are not at equilibrium but rather totally disconnected. Therefore, three VB configurations (AB, covalent; A'B~, ionized A; and
they will not exchange charge. In contrast, the same remote A~B™, ionized B) is used to describe the electronic structure:
atoms described within the CE model are forced into an
unphysical equilibrium, predicting incorrect charge transfer.
There have been attempitso predict dissociation into neutral
fragments while retaining the assumption of equilibrium between
the fragments at infinite separation. However, this has been
accomplished in an ad hoc manner, essentially by neglectingFor simplicity, we consider only two active electrons; the
the electronegativity difference in the numerator of eq 2.24. remaining core electrons are assumed to be localized on the
Although such an approach may be worthy of more detailed atoms and to shield perfectly, such that the effective nuclear
consideration, we make no such attempt here. charge on each centefs™, may be taken as-1. Furthermore,
Regardless of the appropriatenessEf”(q,Rag) in the we restrict the analysis to the case where the neutral atoms A
becomes finite, charge transfer may occur and equilibrium atom A, the ionic species A, A% and A” will be obtained
conditions will be obeyed. Thus, one expects the piecewise-When 0, 1, or 2 valence electrons are placed on it, and
linear form ofEﬁBCﬂ_'m(q'RAB) should become smoothed as the analogously for B. The_effectlve Hamiltonian of the system
chemical bond is formed. Indeed, it has been speculated in thelncluding nuclear repulsion becomes
literature that the increasing interaction between the atoms when

Wyg = CaogoWaogo T Carg-Parg- T Cag:Wape

=cW¥ . +to W +o W (2.25)

a molecule is made would bring the shapeE§f " (q,R=c0) H.(1,2R) = H(1) + H(2) + 1,1 (2.26)

into one similar to that ofES5(q).2° Although a statistical r, R

theory having these features would be highly desirable, it is

not known at present. We take a completely different, wave wit

function-based, approach in the remainder of this paper, but A A A N

we note in passing that the complex temperature isomorphism H(i) = T() + V(i) + Va(i)

presented above may provide a solution more in keeping with Zeff et

the spirit of the statistical approach. - _ lv_z _ A _ B (2.27)
5. Valence Bond (VB) Wave Function Approach and Its 2" |Ry—T IRg—T

Relation with GC and CE Theories. So far, the discussion
about a classical charge-transfer theory has been restricted tavhere standard electronic structure theory notation is Bsad.
its traditional realm of statistical mechanics, with emphasis on minimal basis set is adopted, with one normalized, real atomic
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function on each centerpa(i) andgg(i). The normalized wave

functions for the VB structures are then

1 - -
lIIc = II“AOBO = —(|¢A¢BD_ |¢A¢B[ﬂ
V2(1+ S
W, = Waip = |$gpgl] (2.28)
W =Wyg = = |ppal
where Sag(R) = [dalpsllis an atomic overlap matrix element

and the overbar denotgsspin. The VB energyEyg and the

normalization condition are
Evg = WyglHerl Pyl

_2H

C" 'cCc

+cH,, +C¢H,, +2cc Hy +
A A'A B B'B A A
ZCcC|BHc|B + 20|AC|BH| |
1=0W,|¥,s0
— A2 2 2
=c tgc, o + chc,ASc,A +

26 &, 26,68, (2.29)

The intrinsically nonorthogonal VB matrix elements can be
readily calculated with the hwdin rule$! and Jacobi’s ratio

theorent® Defining the atomic terms

1Py = —han
EAL = —han — Jpa

(2.30)

and the effective one-electron matrix elements
hag = DAl T + V, + VglosD
hac = gl T + ValgpcD

Vac = Bg|ValpcO

(2.31)

(wheregc is used to denote either @f or ¢g), the VB matrix
elements including nuclear repulsion are given as

H.. = Epogo = —[E° + Ep + F(R)]
(1+ Sie)
H,, = Eag = Ea + E3 + 1P, — EAg + Fg(R)
Hy ), = Eag: = Ea + Eg + IPg — EA, + Fo(R)
_ 2 B A BB | hB
HcIA N e hAB + (hgg + Veg)Sig 1 g + R
2(1+ Sp)
2 A B An | B
Ho, = ——=|hag T (Maa T Vaa)Sag + dag + R
2(1+ Sie)
. AB
Hi i = 2nsSis + Kns + & (2.32)
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Fo(R) = [Jag T Kag + VAB\A + VQB +

L+ Sp)| R=or

2hsSee +
AB“-AB R
A R=w» 1
Fa(R)=|2Vgg + |~ — 2 (2.33)
1| r=w 1
FAR =[2V3) +=| ——=
A(R) = 5 =

For largeR, the expected classical electrostatic interactions
between the charged species in eq 2.32 are evident. Finally,
the VB configuration overlap matrix elements are

S = SAIA = SBIB =1
25
S, =S, = ——— (2.34)
2(1+ Sip)
S, = SZAB

The definition of atomic partial charge given a molecular wave
function is a critical point in our discussion. This topic and the
closely related question of how atoms can be defined inside
molecules have a long history in quantum chemi&trye
mention only the approaches closely related to Mulliken
analysis: Mulliker?354 Coulson® and Lavdin®® charges. All
three of these definitions are equivalent within the zero
differential overlap (ZDO) approximatior:>® The reader is
referred to the original references for the detailed definitions
of these charges; we only quote the result for the Coulson
charges as they appear in the specific VB model we have
described:

NioY = ¢+ 2¢] g =1-cl-2¢
NG = ¢+ 2¢], a5 =1-cl—2c

N)(:Zoul) 4 NEBCOUI) =2 ql(a\CouI) — _qg}oul) — q(CouI) (2.35)

Given a convenient VB model for the diatomic molecule AB,
we now consider the relationship between the GC and VB
theories. An immediate difficulty is that the VB energy will be

a function of three coefficients (given the normalization
constraint only two are independent), but the GC and CE
theories have only one parameter for this case: the charge
transferg. Thus, we need to introduce a mapping between VB
wave functions and,. Given the set of all wave functions that
are consistent with the desired charge, there are two natural ways
to proceed. The first is to choose the wave function that provides
the minimal energy within the subspace (a constrained search
procedure as has been used in a different context in B¥T).
The second is to invoke the ideas of MES? defining the
energy as an equally weighted average over the energies of all
wave functions consistent with the constraints. The optimal
values of the constraints are then determined by energy
minimization, as discussed in the Introduction. It is this second
approach that is most fruitful in relating to GC and CE theories.

where the Coulomb and exchange integrals are defined as usuaThis approach is partially justified by the result: we will see

and theF;(R) functions are

below that the GC and CE models are particular cases of this
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maximum entropy VB (MEVB) model. However, as discussed Enogo(R) ~ Ef\ + Eg
in the Introduction, it is also justified as the best physical
solution consistent with a description where only the constraint E R ~E" + Eo — 1 2 40
variables (in this case the atomic partial charges) are considered ae(R~ELHE R (2.40)
“knowable.” B L1

The energyExs of an arbitrary VB wave function can be Ers(R~E T B — 1

split into the diagonal and off-diagonal parts:
These expressions are completely classical in nature and the
Ere(c.C .c) = EXe°"(€) + Ex2°"(g) energy Ea%° becomes independent @t At some critical
AE distanceR.i;, the energy of one of the ionic terms will fall below
(2.36) the covalent energy, anghi, will switch abruptly from 0 to
+1. The piecewise-linear behavior &5 "¢ ¢{q:R) will
Exg Oﬁ(‘c') = 2c.c Hy +2c.c Hy + 26 ¢ H remain for allR. The exact quasi-analytical procedure mentioned
AT B 7E ABoAE above will render exactly the same result of abrupt charge

transfer atRg; although the value oR.i; will be different.

Exg °"(€) = cZHq,

+cH,, +cH
A A'A B

lelg

The diagonal partExs ™" has the same form azs” ™(q), To relate the VB and CE theories, we again appeal to ME
Suggesting that we choose the fOIIOWing relations to define the ideaS, adopting a mapp|ng between VB wave functions and CE
mapping between charge and coefficients: theory based on the Coulson charge. The Coulson charge
definition implies a zero differential overlap (ZDO) modékg
c=[1+q— 2q0(q)] so it is appropriate to use a normalization expression that
) approximatesag = 0. Using this normalization constraint and
Q= [aB(9)] (2.37) demanding that eq 2.35 hold, we fim? = (1 — ¢?), ¢,2 =
Ho(g? + q), andci,2 = Yx(? — q). There are again eight vectors
CIZB =qOe(q) — 1] (c1, 2, C3) satisfying the conditions witlt, = +v1—q?, to

c, = £4/1/2(*+a), andc, = +4/1/2(g°—q). Althoughc. is

For a given value ofj on the allowed domain, there are eight always real forg in the allowed domain, one af, andc, is

vectors €, Ci\, Cig)i consistent with this map, having = imaginary for nonintegen. Averaging over the energies of these
+4/1+9—290(q), ¢, = £4/90(0), andc, = +4/q[O(q)—1]. eight wave functions, one finds

Averaging the eight resulting VB energi€g(5[(ce,Ci,.Cip)il

leads to Eas % “(0a0a:R) = Epo 1 Ego + Fo(R) +

1 8
Exg AVer29e SC= . ZEXE[(cC,clA,qB)i] = Ex"(0) (2.38)

1
X(A)\ - EFA(R) Oa +

1
X(E)S - EFB(R)]qB +
where the off-diagonal terms in the energy have canceled. At qu/i + qu; +

infinite separation, it automatically holds thEks = Ex5°"; 1 _ _
however, the above mapping produces a diagonal energy 2quB[2F°(R) FaR) ~ Fe(R]

expression for all bond distances. Therefore, (2.41)
ExaAverase 64 R) = Eno(R)[1 + q — 200(q)] + where the off-diagonal terms have again canceled out. At infinite
E, .. (R[GO(Q)] + separation, this equation reduces to the CE energy expression.
a-(MLAO(G However, there are a few points to be made for finite bond
Ex-s+(RA[O(0) — 1] (2.39) distances. First, the presenceFo(R) in the first line of eq 2.41

reflects the covalent part of the B interaction. Since it
where the dependence on the bond distaRcdias been  represents g-independent shift of the energy, it will have no
made explicit. Notice thaE)E A" G can be viewed as a  influence on the optimal charges as determined by minimization

generalization ongBCﬂ—'oo for all bond distances satisfying of eq 2.41 at fixedR. Second, the electronegativity is now

EVB Average GC_ £GCH—o ot b — o environment-dependent:
AB ‘AB .
The minimum of E;5~"*"%%{(q,R) will not necessarily o 1
stay at the point qmn = 0. Since the derivative Xa(R) = xa — EFA(R) (2.42)
9Eg Averase 69q:R)/ag does not exist for intega, it is impos-
sible to find the minimum by settingEs ***"*** *{min,R)/3q with an analogous expression fai(R). ltskowitz and Berkowitz

= 0. Instead, a direct value inspection must be done in order to have arrived at a similar form for an environment-dependent
keep track of the minimum a8 varies. This can be done by a  electronegativity using a quite different method based on density
quasi-analytical procedure if the integrals occurring in the terms functional theory®® The CE model does not contain this
Ea%s(R), Ea*s~(R), andEx-s*(R) are numerically evaluated at  environment dependence, which can be interpreted to mean that
different bond separations and the final energy is calculated for an average or representative value of the atomic electronegativity
each. However, a useful analytical procedure can be devised ifis implicitly used, e.g.xa(R) ~ xa(Req. Finally, if we apply
some approximations are introduced. Approximating the interac- Mulliken—Ruedenberg approximatidi$® to the integrals in

tion functionsF¢(R), Fa(R), and Fg(R) by their asymptotic F«(R), consistent with the ZDO origin of the Coulson charge,
values, the energies in the weighted sum become and neglect all terms higher than first-orderSis, we find
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TFR —FAR — FeR] ~Jg  (243)
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has been shown to give rise to the charge equilibration (CE)
theory for a special case where the temperature is complex. We
have introduced a maximum entropy-motivated mapping be-

We conclude that the CE expression is exactly recovered (with tween atomic charges and the underlying wave function(s):
a shielded Coulomb interaction as employed by Rappe and maximum entropy valence bond (MEVB) theory.

Goddard” and an environment-dependent electronegativity)

We have shown that both the GC and CE approaches can be

from the application of a charge-constrained maximum entropy considered as specialized cases of MEVB, with different

procedure to a minimal basis VB wave function given the ZDO

approximation and the Coulson definition of atomic charge.
It is fruitful to compare these results to previous work in the

context of DFT. For the case of a neutral diatomic AB, the CE

chargega = —qg is simply
B (e — %)
=" 0 (2.44)
2[na + 15 — Inp(Rag)]
The MEVB-CE charge is given by
1 1
(Xg - Xg) + EFA(RAB) - EFB(RAB)
Op = (2.45)

2[’72\ + 77(3) — Jap(Rag)]

differing only in the environment dependence of the electro-
negativities. By combining the Sanderson Principle with the
DFT expression for the chemical potentialz and ug as a
function of the atomic charges, Nalewaf$khas derived

(g — 1) + [TaR) Ava(R) dR — [f5(R) Avg(R) dR
2[ya + 78]

Oa =
(2.46)
wherefy andfg are the Fukui functior?$.68 of atoms A and B,

and Avp and Avg are the external potential perturbation on
atomsA andB by their counterparts B and A, respectively, In

definitions for the charge that enters as a constraint. To the best
of our knowledge, this work represents the first unification of
GC and CE approaches. More importantly, our approach
suggests many other possible models that have yet to be
explored. Entire families of classical charge transfer methods
can be generated by applying these procedures with other
definitions of atomic partial charges, for example, Mulliken or
Léwdin charges. Additionally, one can proceed beyond the
minimal basis VB wave function used here. The expansion of
the number of degrees of freedom implicit in a more flexible
VB wave function should be accompanied by an extension of
the constraints from charges to include also higher multipoles
and response functions, e.g., dipoles and polarizabilities. These
are very promising new areas of research that will hopefully
culminate both in the improvement of classical charge transfer/
polarizability models and also in a rigorous and well-defined
framework for interfacing classical electrostatic models with
guantum chemistry. We have not needed to use the formal tools
of maximum entropy methods in this work because of the
simplicity of the model. However, this situation will change
for the more complicated extensions we mention.

Our aim in this paper has been primarily conceptual: to
introduce a new, rigorously derived way of formulating the
problem of quantum chemistry in open systems that emphasizes
wave functions instead of densities. However, one should realize
that the MEVB model inherits the problems of GC and CE
theories insofar as it reduces to them. The practical problem is
to remove the limitations of these theories. Because the MEVB

a more sophisticated perturbation-DFT approach, Itskowitz and theory is derived in a well-defined way from wave functions,

BerkowitZ2 derived

(2w + TR Ava(R dR— [T5(R) Avg(R) dR
2[’72 + 77% — Jap(Rap)]

Oa =
(2.47)

one can identify precisely the steps that lead to breakdown, for
example the residual charge transfer in the CE representation
of infinitely separated atoms. Indeed, we have already formu-

lated an MEVB-based model that removes this problem while

retaining most of the simplicity of the CE theof§/This work

will be presented in the sequel to this paper.

This equation has the same form as eq 2.45, and becomes

identical to it under the approximation thiat~ ¢»2 andfg ~

¢s2. The environment dependence of the electronegativities

cannot repair the dissociation problem. By imposing the
condition of chemical equilibriumua = us at all bond
separations, BerkowitZ has derived

JTAR) Ava(R) dR— [f(R) Avg(R) dR
- 2[’72 + Ug = Jas(Rap)]

which does correctly give a chargg = O for the dissociation

Oa (2.48)
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in the gas phase. However, the conspicuous absence of the

electronegativity term ;3 — %) will make this formula
qualitatively unrealistic for near-equilibrium geometries. A

globally accurate CE expression does not yet exist in any DFT-

based theory.

I1l. Conclusions

We have explored the origin of and relationships between
various classical charge transfer theories. A purely statistical
approach (GC) that has been widely studied by previous workers
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